Transient adenoviral N-methylpurine DNA glycosylase overexpression imparts chemotherapeutic sensitivity to human breast cancer cells.

نویسندگان

  • Mikael Rinne
  • David Caldwell
  • Mark R Kelley
چکیده

In an effort to improve the efficacy of cancer chemotherapy by intervening into the cellular responses to chemotherapeutic change, we have used adenoviral overexpression of N-methylpurine DNA glycosylase (MPG or ANPG/AAG) in breast cancer cells to study its ability to imbalance base excision repair (BER) and sensitize cancer cells to alkylating agents. Our results show that MPG-overexpressing cells are significantly more sensitive to the alkylating agents methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, methylnitrosourea, dimethyl sulfate, and the clinical chemotherapeutic temozolomide. Sensitivity is further increased through coadministration of the BER inhibitor methoxyamine, which covalently binds abasic or apurinic/apyrimidinic (AP) sites and makes them refractory to subsequent repair. Methoxyamine reduction of cell survival is significantly greater in cells overexpressing MPG than in control cells, suggesting a heightened production of AP sites that, if made persistent, results in increased cellular toxicity. We further explored the mechanism of MPG-induced sensitivity and found that sensitivity was associated with a significant increase in the number of AP sites and/or single-strand breaks in overexpressing cells, confirming a MPG-driven accumulation of toxic BER intermediates. These data establish transient MPG overexpression as a potential therapeutic approach for increasing cellular sensitivity to alkylating agent chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing.

The DNA base excision repair (BER) pathway is responsible for the repair of alkylation and oxidative DNA damage. The short-patch BER pathway, beginning with the simple glycosylase N-methylpurine DNA glycosylase (MPG), is responsible for the removal of damaged bases such as 3-methyladenine and 1,N(6)-ethenoadenine from the DNA after alkylation or oxidative DNA damage. The resulting apurinic site...

متن کامل

N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts

Previous studies indicate that overexpression of N-methylpurine DNA glycosylase (MPG) dramatically sensitizes cells to alkylating agent-induced cytotoxicity. We recently demonstrated that this sensitivity is preceded by an increased production of AP sites and strand breaks, confirming that overexpression of MPG disrupts normal base excision repair and causes cell death through overproduction of...

متن کامل

Human methyl purine DNA glycosylase and DNA polymerase beta expression collectively predict sensitivity to temozolomide.

Overexpression of N-methylpurine DNA glycosylase (MPG) has been suggested as a possible gene therapy approach to sensitize tumor cells to the cell-killing effects of temozolomide, an imidazotetrazine-class chemotherapeutic alkylating agent. In the present study, we show that both elevated MPG expression and short hairpin RNA-mediated loss of DNA polymerase beta (Pol beta) expression in human br...

متن کامل

Altering DNA base excision repair: use of nuclear and mitochondrial-targeted N-methylpurine DNA glycosylase to sensitize astroglia to chemotherapeutic agents.

Primary astrocyte cultures were used to investigate the modulation of DNA repair as a tool for sensitizing astrocytes to genotoxic agents. Base excision repair (BER) is the principal mechanism by which mammalian cells repair alkylation damage to DNA and involves the processing of relatively nontoxic DNA adducts through a series of cytotoxic intermediates during the course of restoring normal DN...

متن کامل

Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide.

PURPOSE To improve the treatment of women with ovarian cancer, we are investigating the modulation of a prominent DNA-damaging agent, temozolomide, by manipulating the DNA base excision repair (BER) pathway via BER inhibitor, methoxyamine, and overexpression of N-methylpurine DNA glycosylase (MPG). EXPERIMENTAL DESIGN Enhancement of temozolomide via methoxyamine and MPG overexpression was ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 2004